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What are the limits of deep learning?

The much-ballyhooed artificial intelligence approach boasts impressive feats but still falls
short of human brainpower. Researchers are determined to figure out what’s missing.

M. Mitchell Waldrop, Science Writer

There's no mistaking the image: It's a banana—a big,
ripe, bright-yellow banana. Yet the artificial intelligence
(AVl) identifies it as a toaster, even though it was trained
with the same powerful and oft-publicized deep-learning
techniques that have produced a white-hot revolution in
driverless cars, speech understanding, and a multitude of
other Al applications. That means the Al was shown sev-
eral thousand photos of bananas, slugs, snails, and
similar-looking objects, like so many flash cards, and then
drilled on the answers until it had the classification down
cold. And yet this advanced system was quite easily con-
fused—all it took was a little day-glow sticker, digitally
pasted in one comner of the image.

This example of what deep-learning researchers
call an "adversarial attack,” discovered by the Google
Brain team in Mountain View, CA (1), highlights just
how far Al still has to go before it remotely approaches
human capabilities. “I initially thought that adversarial
examples were just an annoyance,” says Geoffrey Hinton,
a computer scientist at the University of Toronto and one
of the pioneers of deep leaming. “But | now think they're
probably quite profound. They tell us that we're doing
something wrong.”

That's a widely shared sentiment among Al prac-
titioners, any of whom can easily rattle off a long list of
deep leaming’s drawbacks. In addition to its vulnerability

Apparent shortcomings in deep-learning approaches have raised concerns among researchers and the general public as
technologies such as driverless cars, which use deep-learning techniques to navigate, get involved in well-publicized

mishaps. Image credit: Shutterstock.com/MONOPOLY919.
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“Neural network” models of Al process signals by sending them through a network of nodes analogous to neurons.
Signals pass from node to node along links, analogs of the synaptic junctions between neurons. “Learning” improves the
outcome by adjusting the weights that amplify or damp the signals each link carries. Nodes are typically arranged in a
series of layers that are roughly analogous to different processing centers in the cortex. Today's computers can handle
"deep-learning” networks with dozens of layers. Image credit: Lucy Reading-lkkanda (artist).

to spoofing, for example, there is its gross inefficiency.
“For a child to learn to recognize a cow,” says Hinton,
“it's not like their mother needs to say ‘cow’ 10,000
times”"—a number that's often required for deep-leam-
ing systems. Humans generally learn new concepts from
just one or two examples.

Then there’s the opacity problem. Once a deep-
learning system has been trained, it's not always clear
how it's making its decisions. “In many contexts that's
just not acceptable, even if it gets the right answer,” says
David Cox, a computational neuroscientist who heads
the MIT-IBM Watson Al Lab in Cambridge, MA. Suppose
a bank uses Al to evaluate your credit-worthiness and
then denies you a loan: “In many states there are laws
that say you have to explain why,” he says.

And perhaps most importantly, there's the lack of
common sense. Deep-learning systems may be wizards
at recognizing patterns in the pixels, but they can’t un-
derstand what the patterns mean, much less reason
about them. “It's not clear to me that current systems
would be able to see that sofas and chairs are for sitting,”
says Greg Wayne, an Al researcher at DeepMind, a
London-based subsidiary of Google’s parent company,
Alphabet.

Increasingly, such frailties are raising concerns
about Al among the wider public, as well—especially
as driverless cars, which use similar deep-learning
techniques to navigate, get involved in well-publicized
mishaps and fatalities. “People have started to say,
‘Maybe there is a problem’,” says Gary Marcus, a cogni-
tive scientist at New York University and one of deep
learning’s most vocal skeptics. Until the past year or so,
he says, “there had been a feeling that deep learning
was magic. Now people are realizing that it's not magic.”

Waldrop

Still, there’s no denying that deep leaming is an in-
credibly powerful tool—one that's made it routine to
deploy applications such as face and voice recognition
that were all but impossible just a decade ago. “So |
have a hard time imagining that deep learing will go
away at this point,” Cox says. "It is much more likely
that we will modify it, or augment it.”

Brain Wars

Today’s deep-leaming revolution has its roots in the “brain
wars” of the 1980s when advocates of two different ap-
proaches to Al were talking right past each other.

On one side was an approach—now called “good old-
fashioned Al"—that had dominated the field since the
1950s. Also known as symbolic Al, it used mathematical
symbols to represent objects and the relationship between
objects. Coupled with extensive knowledge bases built by
humans, such systems proved to be impressively good at
reasoning and reaching conclusions about domains such as
medicine. But by the 1980s, it was also becoming clear that
symbolic Al was impressively bad at dealing with the fluidity
of symbols, concepts, and reasoning in real life.

In response to these shortcomings, rebel researchers
began advocating for artificial neural networks, or con-
nectionist Al, the precursors of today’s deep-leamning
systems. The idea in any such system is to process sig-
nals by sending them through a network of simulated
nodes: analogs of neurons in the human brain. The
signals pass from node to node along connections, or
links: analogs of the synaptic junctions between neu-
rons. And learning, as in the real brain, is a matter of
adjusting the “weights” that amplify or damp the sig-
nals carried by each connection.

In practice, most networks arrange the nodes as a
series of layers that are roughly analogous to different

PNAS | January 22, 2019 | vol. 116 | no. 4 | 1075

www.manaraa.com



L T

/

1\

=y

processing centers in the cortex. So a network spe-
cialized for, say, images would have a layer of input
nodes that respond to individual pixels in somewhat the
same way that rod and cone cells respond to light hitting
the retina. Once activated, these nodes propagate their
activation levels through the weighted connections to
other nodes in the next level, which combine the in-
coming signals and are activated (or not) in turn. This
continues until the signals reach an output layer of
nodes, where the pattern of activation provides an an-
swer—asserting, for example, that the input image was
the number “9.” And if that answer is wrong—say that
the input image was a "0"—a "backpropagation” al-
gorithm works its way back down through the layers,
adjusting the weights for a better outcome the next time.

By the end of the 1980s, such neural networks had
turned out to be much better than symbolic Al at dealing
with noisy or ambiguous input. Yet the standoff between
the two approaches still wasn't resolved—mainly be-
cause the Al systems that could fit into the computers of
the time were so limited. It was impossible to know for
sure what those systems were capable of.

That understanding began to advance only in the
2000s, with the advent of computers that were orders
of magnitude more powerful and social media sites
offering a tsunami of images, sounds, and other train-
ing data. Among the first to seize this opportunity was

Hinton, coauthor of the backpropagation algorithm
and a leader of the 1980s-era connectionist movement.
By mid-decade, he and his students were training
networks that were not just far bigger than before. They
were considerably deeper, with the number of layers
increasing from one or two to about half a dozen.
(Commercial networks today often use more than 100.)

In 2009, Hinton and two of his graduate students
showed (2) that this kind of “deep learning” could
recognize speech better than any other known
method. In 2012, Hinton and two other students
published experiments (3) showing that deep neural
networks could be much better than standard vision
systems at recognizing images. “We almost halved
the error rates,” he says. With that double whammy in
speech and image recognition, the revolution in deep-
learning applications took off—as did researchers’ efforts
to improve the technique.

One early priority was to expand the ways that deep-
learning systems could be trained, says Matthew Botvi-
nick, who in 2015 took leave from his neuroscience
group at Princeton to do a year's sabbatical at DeepMind
and never left. Both the speech- and image-recognition
systems used what's called supervised leaming, he says:
“That:means:for-every-picture, there is a right answer—
say, ‘cat—and if the network is wrong, you tell it what

the right answer is.” The network then uses the
backpropagation algorithm to improve its next guess.

Supervised learing works great, says Botvinick—if
you just happen to have a few hundred thousand
carefully labeled training examples lying around.
That's not often the case, to put it mildly. And it
simply doesn’t work for tasks such as playing a video
game where there are no right or wrong answers—
just strategies that succeed or fail.

For those situations—and indeed, for much of life in
the real world—you need reinforcement leaming, Bot-
vinick explains. For example, a reinforcement leaming
system playing a video game learns to seek rewards (find
some treasure) and avoid punishments (lose money).

The first successful implementation of reinforcement
learning on a deep neural network came in 2015 when a
group at DeepMind trained a network to play classic
Atari 2600 arcade games (4). “The network would take
in images of the screen during a game,” says Botvinick,
who joined the company just afterward, “and at the
output end were layers that specified an action, like how
to move the joystick.” The network’s play equaled or
surpassed that of human Atari players, he says. And in
2016, DeepMind researchers used a more elaborate
version of the same approach with AlphaGo (5}—a
network that mastered the complex board game Go—
and beat the world-champion human player.

Unfortunately, neither of these milestones solved the
fundamental problems of deep leaming. The Atari system,
for example, had to play thousands of rounds to master
a game that most human players can leam in minutes.
And even then, the network had no way to understand or
reason about on-screen objects such as paddles. So Hin-
ton's question remains as valid as ever: What's missing?

Maybe nothing. Maybe all that's required is more
connections, more layers, and more sophisticated meth-
ods of training. After all, as Botvinick points out, it's been
shown that neural networks are mathematically equiva-
lent to a universal computer, which means there is no
computation they cannot perform—at least in principle,
if you can ever find the right connection weights.

But in practice, those caveats can be killers—one
big reason why there is a growing feeling in the field
that deep learning’s shortcomings require some fun-
damentally new ideas.

One solution is simply to expand the scope of the
training data. In an article published in May 2018 (6),
for example, Botvinick’s DeepMind group studied
what happens when a network is trained on more than
one task. They found that as long as the network has
enough “recurrent” connections running backward
from later layers to earlier ones—a feature that allows
the network to remember what it's doing from one
instant to the next—it will automatically draw on the
lessons it learned from earlier tasks to learn new ones
faster. This is at least an embryonic form of human-
style "meta-learning,” or learning to learn, which is a
big part of our ability to master things quickly.

A more radical possibility is to give up trying to
tackle the problem at hand by training just one big
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network and instead have multiple networks work in
tandem. In June 2018, the DeepMind team published
an example they call the Generative Query Network
architecture (7), which harnesses two different net-
works to learn its way around complex virtual envi-
ronments with no human input. One, dubbed the
representation network, essentially uses standard
image-recognition learning to identify what's visible
to the Al at any given instant. The generation net-
work, meanwhile, learns to take the first network’s
output and produce a kind of 3D model of the entire
environment—in effect, making predictions about
the objects and features the Al doesn’t see. For
example, if a table only has three legs visible, the
model will include a fourth leg with the same size,
shape, and color.

These predictions, in turn, allow the system to learn
quite a bit faster than with standard deep-leaming
methods, says Botvinick. “An agent that is trying to
predict things gets feedback automatically on every
time-step, since it gets to see how its predictions
turned out.” So it can constantly update its models to
make them better. Better still, the leaming is self-
supervised: the researchers don't have to label any-
thing in the environment for it to work or even provide
rewards and punishments.

An even more radical approach is to quit asking the
networks to learn everything from scratch for every
problem. The blank-slate approach does leave the
networks free to discover ways of representing objects
and actions that researchers might never have thought
of, as well as some totally unexpected game-playing
strategies. But humans never start with a blank slate:
for almost any task, they can bank on at least some prior
knowledge that they've leared through experience or
that was hardwired into their brains by evolution.

Infants, for example, seem to be born with many
hardwired “inductive biases” that prime them to ab-
sorb certain core concepts at a prodigious rate. By the
age of 2 months, they are already beginning to master
the principles of intuitive physics (8), which includes
the notion that objects exist, that they tend to move
along continuous paths, and that when they touch
they don’t just pass through each other. Those same

infants are also beginning to learn the basics of in-
tuitive psychology, which includes an ability to rec-
ognize faces and a realization that the world contains
agents that move and act on their own.

Having this kind of built-in inductive biasing would
presumably help deep neural networks learn just as
rapidly, which is why many researchers in the field are
now making it a priority. Within just the past 1 or
2 years, in fact, the field has seen a lot of excitement
over a potentially powerful approach known as the
graph network (9). “These are deep-learning systems
that have an innate bias toward representing things as
objects and relations,” says Botvinick.

For example, certain objects such as paws, tail, and
whiskers might all belong to a larger object (cat) with
the relationship is-a-part-of. Likewise, Ball A and Block
B might have the mutual relationship is-next-to, the
Earth would have the relationship is-in-orbit-around
the Sun, and so on through a huge range of other
examples—any of which could be represented as an
abstract graph in which the nodes correspond to ob-
jects and the links to relationships.

A graph network, then, is a neural network that
takes such a graph as input—as opposed to raw pixels
or sound waves—then learns to reason about and
predict how objects and their relationships evolve
over time. (In some applications, a separate, standard
image-recognition network might be used to analyze
a scene and pick out the objects in the first place.)

The graph-network approach has already demon-
strated rapid learning and human-level mastery of a
variety of applications, including complex video games
(10). If it continues to develop as researchers hope, it
could ease deep learning’s 10,000-cow problem by
making training much faster and more efficient. And
it could make the networks far less vulnerable to
adversarial attacks simply because a system that rep-
resents things as objects, as opposed to patterns of
pixels, isnt going to be so easily thrown off by a little
noise or an extraneous sticker.

Fundamental progress isn’t going to be easy or fast
in any of these areas, Botvinick acknowledges. But even
so, he believes that the sky’s the limit. “These chal-
lenges are real,” he says, "but they're not a dead end.”
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